
Extending Shannon entropy to
continuous variables

Author date: 2020-01-09

E. Castedo Ellerman (castedo@castedo.com)

Copyright: 
© 2023, Ellerman et al
CC BY License 
This document is distributed under a
Creative Commons Attribution 4.0
International license.

What  qualifies  as  a  satisfactory  extension  of  Shannon  entropy  to  continuous  variables  is
somewhat subjective. What extension is desirable is highly dependent on what one wishes to
measure.

Shannon defines a continuous entropy [1] but clarifies

“In the discrete case the entropy measures in an absolute way the randomness of the
chance variable. In the continuous case the measurement is relative to the coordinate
system.”

The continuous entropy defined by Shannon can be negative. The type of extension considered
in this document is one that measures entropy “in an absolute way”.

Statistical Variance
Information is also a measure of uncertainty. A common, if not the most common, measure of
uncertainty  for  continuous variables is  statistical  variance.  Like entropy,  variance shares the
property that the measure for a combination of two independent sources is the sum of the
measures for the respective sources. More formally, given any two independent variables  and

A preference in entropy extension could be to match variance for continuous variables.  This
document considers the class of entropy extensions that align with variance for continuous vari‐
ables.

Mutual Information
A measurement derived from entropy is 

XXX
YYY

H((X,Y))=H(X,Y)=H(X)+H(Y)Var((X,Y))=Var(X+Y)=Var(X)+Var(Y) \begin{array}{ccccc} \operatorname{H}({ (X,Y)}) & = & \operatorname{H}({ X,Y}) & = & \operatorname{H}({ X}) + \operatorname{H}({ Y}) \\ \operatorname{Var}({ (X,Y)}) & = & \operatorname{Var}({ X+Y}) & = & \operatorname{Var}({ X}) + \operatorname{Var}({ Y}) \\ \end{array} H((X,Y ))
Var((X,Y ))

=
=

H(X,Y )
Var(X + Y )

=
=

H(X) + H(Y )
Var(X) + Var(Y )

I(X;Y)=H(X)+H(Y)−H((X,Y)) I(X;Y) = \operatorname{H}({ X}) + \operatorname{H}({ Y}) - \operatorname{H}({ (X,Y)}) I(X;Y ) = H(X) + H(Y ) − H((X,Y ))
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which Shannon refers to as the actual rate of information transmission [1] (where  and  are
the start  and end of  a  noisy  communication channel).  More  recent  authors  refer  to  this  as
mutual information [2]. One of many interpretations is that   measures the amount of

information about  provided by .

A notable property of mutual information (for two variables) is that it is zero if and only if the
two random variables are independent.

Variance Explained
Variance explained is another measurement which also captures a sense of how much informa‐
tion one variable provides about another. Formally, given random variables  and , variance

explained is  using the definition of conditional expectation [3] where  is
a random variable.

The variance explained by an independent variable is zero. However, unlike mutual information,
zero variance explained does not imply independence. Consider a random variable  that takes

the  values   with  equal  probability.  The  random  variable   explains  zero

variance, but   and   are not independent. Intuitively, the random variable   does provide

some information about . It informs whether  is zero or not. In this sense, something analog‐
ous to mutual information is a more appropriate measure of how much information  provides

about .

Random Objects vs Variables
A random object is a function with a domain of a probability space [3]. When the function values
are real numbers, it is a random variable (or real random object). A finite random object means a
random object that takes on finitely many values. Or in other words, the range of a finite random
object is a set of finite size.

Both entropy and variance are functions of random objects. In the case of Shannon entropy, the
random object is finite (with values often referred to as symbols). In the case of variance, the
random object is a random variable (possibly a vector of real numbers in  ). The distances
between values of a finite random variable affect variance, but not Shannon entropy.

Desirable Extension Properties
Some random variables are also finite random objects, but their variance and Shannon entropy
are not necessarily equal.  Any extension must have some extra input beyond just a random
object to determine whether the output is statistical variance vs Shannon entropy. Let  repres‐
ent a desirable extension with  and  denoting the cases when some extra input determ‐
ines Shannon entropy vs statistical variance, respectively.

Extending mutual information to continuous variables is a desirable property. Since entropy is
equal to the mutual information between a variable and itself, describing an extension of mutual
information, will also describe an extension of entropy.

For finite random objects, the Shannon entropy case should satisfy 

Similarly, for real random objects (random variables), the variance case should satisfy 
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Gh(X,Y)=I(X;Y)Gh(X,X)=H(X) \begin{aligned} G_h(X,Y) & = I(X;Y) \\ G_h(X,X) & = \operatorname{H}({ X}) \end{aligned} G (X,Y )h

G (X,X)h

= I(X;Y )

= H(X)

Gv(X,X)=Var(X) G_v(X,X) = \operatorname{Var}({ X}) G (X,X) =v Var(X)
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Lastly, the notable property to satisfy is mutual information extended to continuous variables: 
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Gv(X,Y)=0 if and only if X and Y are independent G_v(X,Y) = 0 \text{ if and only if $X$ and $Y$ are independent} G (X,Y ) =v 0 if and only if X  and Y  are independent
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