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Introduction
A  popular  statistical  calculation  for  variance is  an  unbiased  estimator often  called  ‘sample
variance’. In contrast, using the definition of variance is often called ‘population variance’ and it
is a biased estimator. “The feeling that an unbiased estimator should be preferred to a biased
estimator is prevalent in current statistical practice.”  [1] Popular software,  such as Excel,  the
Python statistics package and the R language, offer prominent functions named variance
or var which default to calculating ‘sample variance’.

This document evaluates the use of this unbiased estimator with the simplest and most basic
distribution: the Bernoulli distribution. The conclusion is the biased estimator called ‘population
variance’  is  a  better  point  estimator than  the  unbiased  ‘sample  variance’,  in  the  case  of  a
Bernoulli  distribution. It’s worth noting that ‘population variance’ is the  Maximum Likelihood
Estimator (MLE) for a Bernoulli distribution. This document will refer to ‘population variance’ as
the MLE.

Useful applications of sample variance
This  document  focuses  on  point  estimation  of  univariate  Bernoulli  distribution  variance.
Although similar conclusions can be drawn for a univariate normal distribution, these results do
not generalize to multivariate distributions [2].

Point estimation is not the only application for sample variance. Sample variance will precisely
generate a  Chi-square distribution given normally distributed samples of unit variance [1]. The
Chi-square distribution in turn is part of the t-distribution which is the basis of the popular t-
test. Although sample variance can be point estimator, it can be very useful as a function that is
not a point estimator.
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A bias against bias
A binary categorization of estimators,  such as ‘biased’ vs ‘unbiased’,  benefits from simplicity,
understandability and ease of communication. “The very terminology of the theory of unbiased
estimation seems to make the use of unbiased estimators highly desirable.”  [1] Clearly ‘biased’
does not  sound good. But is this property of an estimator, independent of its negative label,
actually undesirable.

We consider a parable that is analogous to choosing estimators.

A ‘biased’ bus

Imagine a commuter debating between two buses. Both buses will pass the commuter’s destina‐
tion after 40 blocks.

Bus A)
Unfortunately, the driver of bus A is unreliable and easily distracted. Bus A stops one block short
(39 blocks) 90% of the time and 9 blocks too far (49 blocks) 10% of the time. The  expected
(average) travel distance on Bus A is 40 blocks.

Bus B)
Bus B always stops after 39 blocks.

Applying terms from statistics, bus B is the ‘biased’ bus because it systematically stops one block
too soon. Bus A on the other hand is the ‘unbiased’ bus because the expected travel distance is
40 blocks.

Which bus should the commuter take? The commuter could follow the rule that ‘unbiased’ buses
are preferable to ‘biased’ buses.

Better measures of desirability
The fundamental problem with choosing the ‘unbiased’ bus A is that the too-short and too-long
distances cancel each other out. A more rational approach would evaluate the average utility of
the various distances, not the average distance. The most popular approach is to evaluate loss
of utility with a  loss function. In the bus parable, this loss function could be the distance the
commuter will need to walk after getting off the bus. This measure is called Mean Absolute Error
(MAE).

A more common choice with extremely convenient mathematical properties is  Mean Squared
Error (MSE). A well known decomposition of MSE is the sum of the estimator variance plus the
square of the bias. Although bias by itself may not be a good measure of quality, the magnitude
of bias might be the important component of MSE depending on the relative magnitudes of
estimator variance vs bias.

Bernoulli distribution
We now switch to an actual mathematical example rather than an illustrative parable. Consider
data generated by a Bernoulli distribution with probability . The variance of this data generat‐
ing process is .

ppp
p(1−p)p
(1-
p)

p(1 − p)
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The Maximum Likelihood Estimator (often called ‘population variance’) is 

where  are independent samples of data generated from the distribution.

A well established result for any  is the expected value of the MLE 

By multiplying the MLE by   we get what is often called the ‘sample variance’ and it is an

unbiased estimator.

We now perform simulations to compare the performance of these two estimators.

Simulation code is in a Jupyter notebook “biased_estimator” : [as HTML] [as .ipynb file]

Estimating when 

Consider the distribution of simulated estimates for n = 32 and :

The true variance to be estimated is 

The sample variance is as follows:

M=1n∑j=1n(Xi−1n∑j=1nXj)2 M = \frac{1}{n} \sum_{j=1}^n \left( X_i - \frac{1}{n} \sum_{j=1}^n X_j \right)^2 
M = X − X
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At first glance it might seem the unbiased estimator is preferable. But consider that the range of
possible estimands is . Even before observing one single data point, we know that the
variance to be estimated can not be greater than .

In fact, in the specific case of  we should fully expect all estimates to be equal or less
than the estimand and none greater than.

A third estimator can be created by taking the minimum of  and the unbiased estimator. But
this  will  no  longer  be  an  unbiased  estimator.  It  is  clearly  better  at  estimating   than  the
unbiased estimator. But is this new biased estimator better than the biased MLE?

For  distributions  with   near   the  unbiased  estimator  makes  an  irrational  trade  off  of
choosing impossible values of variance so that the error on average is zero. It is a similar trade-
off  of  choosing the ‘unbiased’  bus over the ‘biased’  bus so that  the distance traveled is  on
average the desired distance.

Probability of Impossible Estimand

Another possible loss function assigns  to an estimate if it is an impossible estimand and  oth‐
erwise. This document will refer to the expectation of this loss function as the ‘Probability of
Impossible Estimand’ (PIE).

We now consider PIE across all possible values of . For the biased MLE, PIE is always zero. For

the unbiased sample variance it depends on  and the number of samples . Here are simula‐
tions that summarize the trend:
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We see high PIE for all distributions with  near . For lower numbers of samples , notable
PIE values expand into most of the range of possible distributions.

These issues with PIE are specific to distributions with bounded variance and not distributions
with unbounded variance (e.g. the normal distribution).

Overall performance across all 

We finish looking at the performance in both PIE and MSE of both estimators. First we look at
MSE and average error (bias) for both sample variance and the MLE for :

We see that MSE is generally smaller with the MLE than sample variance for small sample sizes.
So although the sample variance maintains an average error around zero, it does so at the cost
of worse overall performance, as evaluated by MSE.

For a sample size of  the line of PIE is added as a black line:

ppp 0.50.50.5 nnn

ppp

n=5n=5n = 5

n=20n=20n = 20
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1. 

2. 

Here we see again that for low values of   the MLE has better MSE than sample variance. For

higher values of , sample variance does achieve improved MSE but it does so at the cost of sig‐
nificantly increased PIE.

Conclusion
When evaluated  as a point estimator for a Bernoulli  distribution, the sample variance is not
more desirable than the MLE. In fact, when evaluated in the context of two loss functions, MSE
and PIE, the MLE is actually more desirable despite its label of being ‘biased’.
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