Summary
A stationary process Zt has multiplicative autocorrelation when
Cor[Zt,Zr]=Cor[Zt,Zs]Cor[Zs,Zr]
for all t≤s≤r. Autocorrelation is defined as
Cor[Zt,Zs]:=σ2Cov[Zt,Zs]
with σ2=Var(Zt).
A stationary autoregressive process has multiplicative autocorrelation
[1].
However, not all stationary Markov processes have multiplicative autocorrelation.
See the section below about a real-valued 3-state Markov chain for a counterexample.
Among discrete-time stationary processes, only autoregressive processes have
multiplicative autocorrelation. Some Markov processes are not obviously
autoregressive processes even though technically they are.
For example, all stationary real-valued two-state Markov chains are
autoregressive (and thus also have multiplicative autocorrelation).
Multiplicative autocorrelation implies autoregression
Consider any real-valued discrete-time stationary Markov process Zt′ and translate
it to Zt:=Zt′−E[Zt′] without loss of generality.
Let
σ2ρ:=Var(Zt):=Cov[Zt,Zt+1]/σ2
Multiplicative autocorrelation implies
Cor[Zt,Zt+n]Cov[Zt,Zt+n]=ρn=ρnσ2
Define what will be shown to be “white noise” of Zt as autoregressive process:
ϵt:=Zt−ρZt−1
By convenient translation,
E[Zt]ϵtCov[Zt,Zs]E[Zt2]E[ZtZt+1]=0=0=E[ZtZs]=σ2=ρ
Consider any n>0.
E[ϵtϵt+n]=E[(Zt−ρZt−1)(Zt+n−ρZt+n−1)]=E[ZtZt+n]+ρ2E[Zt−1Zt+n−1]−ρ(E[ZtZt+n−1]+E[Zt−1Zt+n])=(1+ρ2)ρnσ2−ρ(ρn−1σ2+ρn+1σ2)=0
thus ϵt satisfies the “white noise” condition for expressing Zt
as the autoregressive process
Zt+1=ρZt+ϵt
QED
Real-valued 2-state Markov chain
For any stationary two-state Markov chain [1] Zt,
Cor[Zt,Z0]=Cor[Zt,Zs]Cor[Zs,Z0]
Proof
Let
q1q0:=P(Zt=a1):=P(Zt=a0)
Map Zt to a more convenient
Yt:=a1−a0Zt−a0
Since Yt only equals 0 or 1:
E[Yt]=E[Yt2]=q1
and thus
Var(Yt)=q1−q12=q1q0
For convenience let
p0p1s:=P(Y1=0∣Y0=1):=P(Y1=1∣Y0=0):=p0+p1
Since Yt is stationary, it follows that qi=pi/s for i∈{0,1}.
In preparation for induction, assume
P(Yt=1∣Y0=1)P(Yt=1∣Y0=0)=q1+q0(1−s)t=q1−q1(1−s)t
It must follow that
P(Yt+1=1∣Y0=1)=P(Yt+1=1∣Y1=1)(1−p0)+P(Yt+1=1∣Y1=0)p0=[q1+q0(1−s)t](1−p0)+[q1−q1(1−s)t]p0=q1+[q0(1−p0)−q1p0](1−s)t=q1+[q0(1−p0)−(1−q0)p0](1−s)t=q1+[q0−p0](1−s)t=q1+[q0−q0s](1−s)t=q1+q0(1−s)t+1
and
P(Yt+1=1∣Y0=0)=P(Yt+1=1∣Y1=1)p1+P(Yt+1=1∣Y1=0)(1−p1)=[q1+q0(1−s)t]p1+[q1−q1(1−s)t](1−p1)=q1+[q0p1−q1(1−p1)](1−s)t=q1+[(1−q1)p1−q1(1−p1)](1−s)t=q1+[p1−q1](1−s)t=q1+[q1s−q1](1−s)t=q1−q1(1−s)t+1
which completes induction, noting the base case of t=0 is true.
Due to the convenient mapping to Yt,
E[YtY0]=P(Yt=1∣Y0=1)P(Y0=1)=(q1+q0(1−s)t)q1=q12+q0q1(1−s)t
thus
Cov[Yt,Y0]Cor[Yt,Y0]=E[YtY0]−E[Yt]E[Y0]=q12+q0q1(1−s)t−q12=q0q1(1−s)t=(1−s)t
QED
Counterexample of Real-Valued 3-State Markov Chain
Let Zt be a stationary Markov process such that
P(Zt=−1)=P(Zt=0)=P(Zt=1)=1/3
P(Zt+1=0∣Zt=−1)P(Zt+1=1∣Zt=0)P(Zt+1=−1∣Zt=1)=1/2=1/2=1/2
and for all i∈{−1,0,1},
P(Zt+1=i∣Zt=i)=1/2
Conveniently E[Zt]=0, thus Cov[Zt,Zs]=E[ZtZs].
For one time step we have
P(Z1=1∧Z0=1)P(Z1=−1∧Z0=1)P(Z1=1∧Z0=−1)P(Z1=−1∧Z0=−1)=(1/3)(1/2)=(1/3)(1/2)=0=(1/3)(1/2)
thus autocorrelation of one time step must be positive:
E[Z1Z0]=(1⋅1)61+(−1⋅1)61+(−1⋅−1)61=61
For two time steps
P(Z2=1∧Z0=1)P(Z2=−1∧Z0=1)P(Z2=1∧Z0=−1)P(Z2=−1∧Z0=−1)=(1/3)(1/2)2=(1/3)[(1/2)2+(1/2)2]=(1/3)(1/2)2=(1/3)(1/2)2
thus the autocorrelation for two time steps must be negative:
E[Z2Z0]=(1⋅1)121+(−1⋅1)122+(1⋅−1)121+(−1⋅−1)121=−121
thus
Cor[Z2,Z0]=Cor[Z2,Z1]Cor[Z1,Z0]
References
1.
Hamilton JD. Time series analysis. Princeton, N.J: Princeton University Press; 1994.