

Author date: 2021-05-26

Short simple proof of the Cauchy-Schwarz inequality

E. Castedo Ellerman (castedo@castedo.com)

Copyright:

creativecommons.org/licenses/by/4.0/ 2021 © The Authors. This document is distributed under a Creative Commons Attribution 4.0 International license.

In my opinion, the following proof is the shortest, simplest and best proof of the Cauchy-Schwarz inequality. It is a proof developed in The Cauchy-Schwarz Master Class: An Introduction to the Art of Mathematical Inequalities [1]. Below are three variations of the proof at three increasing levels of abstraction. These three variations are expressed respectively in terms of:

- random variables [2]
- vectors of any real inner product space [1]
- vectors of any inner product space (real or complex) [3]

The Cauchy-Schwarz inequality was originally expressed in terms of sequences of numbers [1]. The continuous analogue is in terms of two integrable functions [4].

In terms of random variables

Given any two random variables X and Y,

$$\mathrm{E}[XY]^2 \leq \mathrm{E}[X^2]\mathrm{E}[Y^2]$$

with equality holding iff aX+bY=0 for some constants a and b, at least one non-zero (i.e. X and Y are linearly dependent).

Proof

If either $\mathrm{E}ig[X^2ig]=0$ or $\mathrm{E}ig[Y^2ig]=0$ then $\mathrm{E}[XY]=0.$ Otherwise define

$$\hat{X} := \frac{X}{\sqrt{\operatorname{E}[X^2]}} \ \text{ and } \ \hat{Y} := \frac{Y}{\sqrt{\operatorname{E}[Y^2]}}$$

for which $\mathrm{E}\!\left[\hat{X}^2\right] = \mathrm{E}\!\left[\hat{Y}^2\right] = 1$. The proof follows from the product of two numbers always being less than or equal to the average of their squares

$$0 \leq \mathrm{E} \Big[(\hat{X} - \hat{Y})^2 \Big] \ \mathrm{E} \Big[\hat{X} \hat{Y} \Big] \leq \mathrm{E} \Big[rac{\hat{X}^2 + \hat{Y}^2}{2} \Big] \ rac{\mathrm{E}[XY]}{\sqrt{\mathrm{E}[X^2]} \sqrt{\mathrm{E}[Y^2]}} \leq rac{1+1}{2} \ \mathrm{E}[XY]^2 \leq \mathrm{E} \big[X^2 \big] \mathrm{E} \big[Y^2 ig]$$

If both sides of the inequality are equal, linear dependence follows since either X=0 or Y=0 or

$$rac{1}{\sqrt{{
m E}[X^2]}}X + rac{1}{\sqrt{{
m E}[Y^2]}}Y = \hat{X} - \hat{Y} = 0$$

If X and Y are linearly dependent, either X=kY or Y=kX for some constant k, either way both sides of the inequality are equal.

QED

In terms of vectors of a real inner product space

The probabilistic proof can be generalized to any real inner product space as shown in [1].

Given any vectors x, y from a real inner product space, the Cauchy-Schwarz inequality is

$$\langle x,y
angle \leq \|x\|\,\|y\|$$

with equality holding iff x and y are linearly dependent.

Proof

If either $\|x\|=0$ or $\|y\|=0$ then $\langle x,y\rangle=0$. Otherwise define

$$\hat{x} := rac{x}{\|x\|} ext{ and } \hat{y} := rac{y}{\|y\|}$$

for which $\|\hat{x}\| = \|\hat{y}\| = 1$.

$$egin{aligned} 0 & \leq \langle \hat{x} - \hat{y}, \hat{x} - \hat{y}
angle \ 2 \, \langle \hat{x}, \hat{y}
angle & \leq \langle \hat{x}, \hat{x}
angle + \langle \hat{y}, \hat{y}
angle \ 2 \, rac{\langle x, y
angle}{\|x\| \, \|y\|} \leq 1 + 1 \ \langle x, y
angle & \leq \|x\| \, \|y\| \end{aligned}$$

If both sides of the inequality are equal, linear dependence follows since either $x=\vec{0}$ or $y=\vec{0}$ or

$$rac{1}{\|x\|}x + rac{1}{\|y\|}y = \hat{x} - \hat{y} = \vec{0}$$

If x and y are linearly dependent, either $x=\lambda y$ or $y=\lambda x$ for some scaler λ , either way both sides of the inequality are equal.

In terms of vectors of an inner product space

This section considers the Cauchy-Schwarz inequality for vectors of a real or complex inner product space.

The proof for real inner produce spaces does not work for complex inner product spaces because $\langle y,x\rangle=\overline{\langle x,y\rangle}$ (complex conjugate).

The proof is effectively the same as the previous proof for real inner product spaces. But the normalized vectors \hat{x} and \hat{y} must be "rotated" in the complex plane so that both sides of the inequality remain real. This rotation will be done via a multiplier α .

Proof

Let \hat{x} and \hat{y} be defined as in the proof for real inner product spaces. If $\langle \hat{x},\hat{y} \rangle=0$ the inequality holds, otherwise let

$$lpha := \sqrt{rac{\langle \hat{y}, \hat{x}
angle}{|\langle \hat{x}, \hat{y}
angle|}}$$

for which the following convenient properties hold

$$\alpha \overline{\alpha} = 1 = \overline{\alpha} \alpha$$

$$lpha^2 raket{\hat{x},\hat{y}} = rac{raket{\hat{y},\hat{x}}raket{\hat{x},\hat{y}}{\ket{\hat{x},\hat{y}}|}}{\ket{\hat{x},\hat{y}}|} = rac{\ket{raket{\hat{x},\hat{y}}}^2}{\ket{\hat{x},\hat{y}}|} = \ket{raket{\hat{x},\hat{y}}|} = \overline{lpha}^2 raket{\hat{y},\hat{x}}$$

The proof proceeds like with a real inner product space but using α ,

$$egin{aligned} 0 & \leq \left\langle lpha \hat{x} - \overline{lpha} \hat{y}, lpha \hat{x} - \overline{lpha} \hat{y}
ight
angle \ & = lpha \overline{lpha} \left\langle \hat{x}, \hat{x}
ight
angle - lpha^2 \left\langle \hat{x}, \hat{y}
ight
angle - \overline{lpha}^2 \left\langle \hat{y}, \hat{x}
ight
angle + \overline{lpha} lpha \left\langle \hat{y}, \hat{y}
ight
angle \ & 2 \left| \left\langle \hat{x}, \hat{y}
ight
angle \right| \leq \left\langle \hat{x}, \hat{x}
ight
angle + \left\langle \hat{y}, \hat{y}
ight
angle \ & 2 \left| \left| \left\langle x, y
ight
angle \right| \leq 1 + 1 \ & \left| \left\langle x, y
ight
angle \right| \leq \|x\| \, \|y\| \end{aligned}$$

If both sides of the inequality are equal, linear dependence follows since either $x=\vec{0}$ or $y=\vec{0}$ or

$$rac{lpha}{\|x\|}x+rac{\overline{lpha}}{\|y\|}y=lpha\hat{x}-\overline{lpha}\hat{y}=ec{0}$$

If x and y are linearly dependent, either $x=\lambda y$ or $y=\lambda x$ for some scaler λ , either way both sides of the inequality are equal.

QED

References

- 1. Steele JM. The Cauchy-Schwarz master class: An introduction to the art of mathematical inequalities. Cambridge; New York: Cambridge University Press; 2004.
- DeGroot MH, Schervish MJ. Probability and statistics. 3rd ed. Boston: Addison-Wesley;

- 3. Cauchy-schwarz inequality Wikipedia, the free encyclopedia. 2021. Available: https://en.wikipedia.org/w/index.php?title=Cauchy-Schwarz_inequality&oldid=1024014552
- 4. Weisstein EW. Schwarz's inequality. From MathWorld-a wolfram web resource. Available: https://mathworld.wolfram.com/SchwarzsInequality.html