Microscale estimation of admixture timing

... and an example stochastic process for estimating it ... poorly.

castedo.com/poster

Why admixture timing?

Genetic data can provide estimates of the timing of mating between populations.

Microscale quantity to estimate

average lineal admixture time

Definitions

the amount of time since fertilization of the lineal admixture first admixed individual in a lineage time

lineage

single path of descent in the genealogy of

Macroscale vs microscale

Why lineal admixture time?

1. quantity grounded in realistic model 2. can estimate higher moments of time distribution 3. can estimate fine-grained conditional distributions (e.g. per chromosome)

an individual

average across all lineages of all individuals average lineal admixture time in a population

For more details, visit <u>castedo.com/doc/151</u>.

Two scenarios with single pulse of 7 immigrants of red ancestry

Why microscale?

1. Convergent lines of evidence (consilience) are impacted by the same microscale events of past mating (e.g. genetic evidence & distinctive archaeological cultures in nearby settlements).

— random lineage

Distribution of lineal admixture times

2. **Assortative mating** is common in diverse human populations and not modeled by only population migration.

Simple estimator

Given

• frequency α_i of alleles from the *i*-th ancestral group, and • frequency β of diploid loci with dual ancestry,

estimate **average lineal admixture time** as

where

When there are only two ancestral source populations:

Stochastic process of simple estimator

This simple estimator is precisely the expected lineal admixture time under a stochastic process with the following assumptions:

- discrete time steps
- infinite population
- proportion α_i of immigrants from *i*-th ancestral group
- fraction ϕ of population is new non-admixed immigrants
- random mating (excluding new immigrants)
- stationary process

The underlying random object of this stochastic process is formally defined as a *gametic lineage*.

For more details, visit <u>castedo.com/doc/153</u>.

Interested in using an advanced admixture time estimator?

Sign up here or <u>castedo.com/poster</u>

Glimpse of estimator derivation

Setup similar to first step analysis:

 ${
m E}_{t+1}[M] = ({
m E}_t[M|M>0]+1){
m P}_t\{M>0\}^2(1-\phi)$ $egin{aligned} &+ 2 \left(rac{1}{2} \mathrm{E}_t[M|M>0] + 1
ight) \mathrm{P}_t\{M>0\} \mathrm{P}_t\{M=0\}(1-\phi) \ &+ \left(\mathrm{P}_t\{M=0\}^2 - \sum_i \mathrm{P}_t\{M=0 \wedge A=e_i\}^2
ight) (1-\phi) \end{aligned}$

Learn more at <u>castedo.com/doc/154</u>.

Special thanks to Hannah Moots and Benjamin Peter for constructive feedback on <u>castedo.com/doc/151</u> about lineal admixture time and Steven

Orzack for mentorship.

Probability of lineal admixture time of zero:

 $\mathrm{P}_{t+1}\{M=0 \wedge A=\mathrm{e}_i\}=\phi lpha_i+(1-\phi)\mathrm{P}_t\{M=0 \wedge A=\mathrm{e}_i\}^2$

For more details, visit <u>castedo.com/doc/154</u>.

